
4
Implementation

At this point, you should have a clear operational policy that governs how your
users may make use of network services. You should also have good network
monitoring tools installed and collecting data, so you can tell at a glance pre-
cisely how your network is actually being used. With these major components
in place, you are now ready to make changes to the network configuration that
bring actual utilisation in line with policy. The implementation phase of net-
work building closes the feedback loop that allows policy to be consulted upon
and revised, and network services to be implemented and changed, based on
information provided by the monitoring systems.

This chapter will show you the essential technical components that should be in
place in virtually every network connected to the Internet. These techniques
will allow you to limit, prioritise, and optimise the flow of information between
the Internet and your users.

While these technical constraints are necessary to maintain the health of the
network, there is one management technique that is often overlooked, yet
nearly always makes the greatest impact on network utilisation: communica-
tion with your users. If your users don't understand that their actions directly
impact the performance of the network, how can they be expected to know that
the network is overutilised and not "just broken?" When users are frustrated
with network performance, and met with indifference (or outright contempt) by
network administrators, they tend to try to find ways around the rules in order to
"get their work done." More often than not, these workarounds will consume
even more bandwidth, causing problems for users and administrators alike.
For example, an enterprising user might discover that they can bypass a slow
and badly configured network proxy by using an anonymising proxy server
found somewhere on the Internet. While this may show improvement in per-
formance for the user, that traffic is not being cached locally, so bandwidth is
wasted. As news of this "fix" spreads among the users, even more bandwidth

is wasted, making the entire network slower for everyone. If the network ad-
ministrators had been monitoring the performance of the proxy server, or listen-
ing to user complaints, then the problem could have been addressed much ear-
lier.

Of course, the vast majority of users are not malicious. Often they simply do
not understand the repercussions of their actions, and may be completely
caught off-guard when they realise that they are consuming significantly more
bandwidth than other users. For example, when network administrators at
Carnegie Mellon approached one user about excessive traffic coming from their
computer, their response was: "I don't understand--what's bandwidth? How do
I reduce it? What am I doing wrong? What's going on?!" (Read the full story in
the Case Studies chapter, page 235).

While technical solutions are indeed important, they must go hand-in-hand with
education and a responsive network management team. No technical solution
can help a network if all of the users insist on consuming as much bandwidth
as possible without regard for others. Likewise, it is impossible to effectively
manage a network without communicating with your users. You can only pro-
vide the best possible service to your users by understanding their needs. The
best way to understand those needs, and to make your users appreciate the
reality of limited resources, is through clear and honest communication.

The importance of user education
The actions of your users will ultimately determine your bandwidth utilisation.
Therefore, your users should be informed of the rights and obligations that
govern network use. Having an operational policy does little good if your users
are not informed about its scope or details. While this could mean sending out
blanket information that is targeted at all users, you may find that you have bet-
ter results when personally contacting individual users.

But how can you realistically expect to personally speak with every user on a
1000+ node network? Fortunately, it is rarely necessary to give every user a
personal interview. You can do wonders by simply starting with the biggest
"bandwidth hogs" and proceed from there.

The 5/50 rule
More often than not, the majority of users make light use of network resources.
They occasionally check their email and browse a few web pages without mak-
ing excessive use of the network. However, there are always a few users who
will use all available bandwidth, both inbound and outbound, by running serv-
ers, peer-to-peer file sharing programs, video streams, and other bandwidth
intensive applications. Those are the circumstances where the 5/50 rule

102! Chapter 4: Implementation

comes into play. By focusing on the 5% of users who typically consume 50% of
the bandwidth, you can make a huge impact on network performance with less
effort.

Targeting the top 5% means identifying and contacting people in order to inform
them of their high utilisation. Unless you have a clear idea of who is using your
network, there is no way to identify the source of the problem (see chapter
three: Monitoring & Analysis for ways to reliably identify individual users).
Once you have identified problem users, you should inform them that their us-
age deviates from that which is stated as acceptable by the network access
policy.

It may become apparent that such users have legitimate needs differing from
those of the typical user, in which case you could make arrangements to spe-
cifically support them. Often, users have no idea that they are causing prob-
lems (particularly if their computer has been infected by a virus, or if it is run-
ning a peer-to-peer file sharing application). Of course, a technical solution can
solve the problem by simply denying access to the user once utilisation ex-
ceeds a particular threshold. But it is more likely that informing the user of the
problem, and showing them how to fix it, will lead that user to take greater re-
sponsibility for their own network activity in the future.

Providing feedback to users about network load
If users know there is network congestion, they tend to cut down on their us-
age, which in turn makes the network experience better for everyone. Without
that feedback, users tend to think that the network is "broken" and may inadver-
tently increase the network load. A classic example of this can be seen when a
user becomes impatient with a slowly loading web page and will repeatedly
click the reload key. This action submits more network requests, so that the
network moves even more slowly, causing the user to continue clicking the re-
load key, ensuring that the vicious cycle continues. That is, it continues until
the user gives up in disgust and complains that the network is "broken."

Here are a few methods you can use to communicate the state of the network
to your users.

Public utilisation graphs
One obvious method for showing network congestion to your users is to simply
publish your utilisation graphs on a web server. Even when the Internet con-
nection is experiencing heavy use, the monitoring server will be available since
it resides on the local network. This will show one and all that the lag is caused
by too much network access, and not by a misconfiguration of the servers. By
including individual user data, as well as aggregated throughput statistics, you
can encourage people to remind their peers that bandwidth is limited. Some

! Chapter 4: Implementation! 103

sites even post a "top ten" or "top 100" list of excessive bandwidth users, ag-
gregated daily or weekly. If your name appears on that list, you can be sure
that your friends and colleagues will have a few words for you. This method
can be even more effective than receiving a phone call from the network ad-
ministrator.

You can set the utilisation graphs as the default home page (or perhaps make it
a single click away) for computers installed in public labs. You might even set
up a computer with a continuous display of the current network utilisation and
post it in a highly visible place. This helps to serve as a constant reminder for
users that their actions have a direct impact on their colleagues' ability to ac-
cess Internet resources.

Using a captive portal
A captive portal allows you to "capture" a user's browsing session and redirect
them to a web page where they may be asked to perform some task. Wireless
hotspots often use captive portals to capture the client's session and redirect
them to a site where they can enter their credit card details or other credentials.

A real world example of effective use of a captive portal is the implementation
at the University of KwaZulu-Natal. All users at the institution were being
authenticated to several Squid proxy servers. The Squid log files were then in
turn being imported into a MySQL database. This resulted in a comprehensive
database that could be interrogated to derive statistics. Queries run against the
database showed that during work hours, up to 20% of the bandwidth was be-
ing used by just 20 users out of a total of roughly 12000. That is, 0.2% of the
user base was consuming 20% of the bandwidth for the entire university! In
addition, the majority of the sites were clearly not of academic content. The
university had a policy about bandwidth usage, however its users were either
ignoring the policy or simply had not read it. A decision was made that the top
20 users needed to be shown the policy, and if they continued to ignore it that
action would be taken against them.

A captive portal mechanism was implemented to notify the top 20 users auto-
matically. Squid has a feature called redirection, which enables you to redirect
a user to a web page if they match a specific Squid Access Control List
(ACL). Every night a script was run that compiled a list of the top 20 users.
These users were then added to a special ACL contained in a text file on the
Squid servers. When the user tried to browse the Internet the next morning,
they were redirected to a PHP based web page that highlighted the relevant
sections of the policy. When they clicked on the OK, button the script would
remove them from the ACL and they could continue browsing. If a user was
shown this message more than twice in a 14 day period, they were then dis-
abled from browsing the Internet during work hours for a week.

104! Chapter 4: Implementation

The effect of this over the course of the first month was very interesting. The
top 20 users reduced their work hours bandwidth usage from 16-20% to around
6%, but after hours usage increased. Clearly a lot of the "abusers" had now
moved their browsing habits to after hours where there was less policing. Did
the condition of the Internet line change? No it did not, but what did change is
the the number of users and legitimate sites visited. These both showed an
increase, which indicated that the latent demand for bandwidth had absorbed
the bandwidth freed up by the abusive top users.

If you are keeping detailed logs of network usage, you can interrupt bandwidth
hogs before they cause real problems. By using the redirect functionality of
Squid (page 184), it is simple to redirect "errant users" to a page where they
are reminded of, and must to agree to, the network access policy. Once they
have done this, Squid then allows them to continue browsing. To do this, you
will need to set up the following:

• Configure Squid to authenticate and log traffic per user (page 186)

• Each night, compile list of top users. If any individual user exceeds the "ex-
cessive" usage threshold, add this user's name to a Squid Access Control
List (ACL) (page 269).

• The redirect function in Squid will match the ACL the next time the user
browses the web, and the redirect page will be shown instead of the re-
quested page.

• When the user clicks the "I Agree" button, they are removed from the ACL
and can then browse normally.

• Traffic continues to be logged, and the process begins again.

This is just one example of a creative technical solution that, when combined
with social reinforcement, can change users' behaviour.

General good practices
There are several techniques that your users can implement on their own to
help keep bandwidth utilisation to a minimum. While there is never a guarantee
that users will completely comply with the techniques in this list, making them
aware of these techniques will empower them to start making bandwidth man-
agement part of their daily routine. These techniques of network etiquette
aren't really rules, so much as guidelines for being a good net neighbor.

Optimise your web browser
Every web browser includes options that will limit bandwidth usage. Some of
these options include:

! Chapter 4: Implementation! 105

1. Disable bandwidth-hungry plugins like Java and Flash. Unless a par-
ticular site requires Java for access, it can simply be disabled. Since the
vast majority of Java and Flash applications are simple animations, games,
and videos, there is rarely any need to download them except for enter-
tainment purposes. Use the HTML version of sites that include both HTML
and Flash options. Note that many sites require the use of JavaScript,
which is significantly smaller and faster than Java, and can usually be en-
abled without any noticeable speed penalty.

2. Disable automatic updates. While keeping your browser software up-to-
date is vitally important from a security point of view, updating in an ad-hoc
and automatic way may waste significant bandwidth at peak times. While
this can be sped up considerably using a good caching proxy (page 135) or
a local software update repository (page 144), simply disabling automatic
updates immediately reduces background bandwidth usage. You must re-
member to manually update the software when the network is not busy in
order to apply security patches and feature updates.

3. Increase the size of the local cache. If there are sufficient resources on
the local machine, increase the browser size. More is generally better, but
a cache of several hundred megabytes is usually reasonable.

4. Disable pop-ups. Pop-up windows are nearly always unwanted adver-
tisements containing large images or flash movies, and will automatically
consume significant amounts of unintentionally requested bandwidth. Pop-
ups can be disabled in all modern browsers. Well-coded sites that require
pop-up windows for functionality will still work, and the user can always
allow pop-ups on a case by case basis.

5. Use ad blocking software. By blocking ads before you download them,
you can save bandwidth and reduce user frustration. Free and commercial
ad blocking packages are available for every browser. For Mozilla Firefox,
try AdBlock Plus: https://addons.mozilla.org/firefox/1865/

6. Install anti-spyware tools. Malicious sites may install spyware programs
that consume bandwidth and introduce security problems. These attacks
nearly always come through the web browser. Using a spyware detection
and removal tool (such as Lavasoft AdAware) will keep these problems to a
minimum. http://www.lavasoftusa.com/software/adaware/

7. Disable images. For many kinds of online work, graphical images may not
be required. Since graphic files are considerably larger than HTML code,
disabling the display of images (even temporarily) can significantly improve
response time and reduce bandwidth use. If possible, configure your
browser to only display graphics when explicitly requested.

8. Use Mozilla Firefox instead of Internet Explorer. Although it is the de-
fault browser on most Windows boxes, IE is a notorious attack point for
spyware and viruses, and is widely considered obsolete since the release

106! Chapter 4: Implementation

of Mozilla Firefox (http://www.mozilla.com/firefox/). Since it is an open
source project, Mozilla Firefox has a very large and flexible set of exten-
sions that allow you to configure and optimise just about every aspect of
how the browser works. One popular extension is FireTune
(http://www.totalidea.com/content/firetune/firetune-index.html), which
groups many common optimisation options into a simple, easy to under-
stand menu. Other extensions provide excellent content filtering, presenta-
tion, and download optimisation features.

Of course, the most effective bandwidth optimisation tool is simply refraining
from requesting information that you don't need. Ask yourself if it's really ap-
propriate to try to stream videos from YouTube during peak network times
(even if the video is really funny...). The more you request from a busy net-
work, the longer everyone will have to wait for their requests to be filled. Be
considerate of your fellow network users, and your network will be healthier and
faster.

Optimise your email
Web browsing and email are the most commonly used services on the Internet.
Just as you can optimise your web browser to minimise bandwidth usage, there
are many steps you can take as a user to make your email work better too.

1. Don't use web mail. Sites such as Hotmail, Gmail, and Yahoo! Mail use
significantly more bandwidth than do traditional email services. With graph-
ics, advertisements, and an HTML interface, an individual email may repre-
sent thousands of times the number of bytes of the equivalent text email. If
your network provides email services (via Mozilla Thunderbird, MS Outlook,
or another email client), then use them. If email service is not provided for
you, ask your network administrator if it makes sense to set it up for your
organisation.
Some web mail services, such as Gmail and Fastmail, allow access via
POP3 and IMAP from a standard mail program. This is much faster and
more efficient than using their web interfaces.

2. Send emails in plain text, not HTML. HTML emails are bigger than their
equivalents in plain text, so it is preferable to send plain text emails to re-
duce bandwidth requirements. Most email clients let you set plain text as
the default format, and/or on a per email basis. As well as reducing the
amount of bandwidth needed, you'll also benefit from your email being less
likely to be treated as spam by the recipient.

3. Limit the use of attachments. While it is possible to send colossally huge
files through email, the protocol wasn't really designed for this use. Instead
of sending a large file to a group of people, post the file to a web server

! Chapter 4: Implementation! 107

and send the link instead. This will not only speed up your own email, but it
will save significant bandwidth for everyone receiving the message. If you
must include an attachment, make it as small as possible. You can use a
compression utility to reduce the size of the file (WinZip is one popular
commercial tool, but many free alternatives exist. One list of WinZip alter-
natives is http://free-backup.info/free-winzip.html). If the attachment is a
photograph, reduce the image size to something reasonable, such as
1024x768 or 800x600. This size is usually fine for on-screen viewing, and
is significantly smaller than a raw 3+ Megapixel image.
In addition, websites exist which allow files to be uploaded and included in
the email as a link. This allows recipients to choose whether or not to down-
load the file. One such service is Dropload, http://www.dropload.com/.

4. Filter your email on the server, not the client. If your network admin
provides email services, they should also provide spam and virus filtering.
While it is possible to do this kind of filtering within your mail client, it is far
more efficient to do it on the server side (since junk messages can be dis-
carded before they are downloaded). If your network offers filtering serv-
ices, be sure these are enabled on the server.

5. Use IMAP instead of POP. The IMAP protocol makes much more efficient
use of network bandwidth by using a caching system that only downloads
messages when needed. The POP protocol downloads all email mes-
sages as they are received, whether they are opened or not. If possible,
use IMAP instead of POP. Your network administrator should be able to tell
you if an IMAP server is available. This is especially critical when access-
ing your email over a low-bandwidth link.

6. Don't send spam. Junk email (commonly referred to as spam) comes in
many guises. While we are all familiar with the "get rich quick" and "im-
prove your love life" variety, other kinds are more subtle. One example of
this is the so-called "boycott" email, where someone sends you a petition
for a popular cause (such as lowering gasoline prices or changing an un-
just law). You are instructed to "sign" the petition with your email address,
and send it to six of your friends. These messages are completely fabri-
cated by spammers who then use the collected email addresses as targets
for more spam. These kinds of scams are easily avoided if you ask your-
self, "what will really happen if I send this message with my email address
to total strangers?" The answer: wasted bandwidth, with the promise of
more wasted bandwidth to follow.

Use of collaborative tools vs. Word attachments
One popular phenomenon among inexperienced users is the proliferation of
Microsoft Word file attachments in normal email. While programs like Word
and OpenOffice are excellent choices for desktop publishing, they are nearly
always a waste of bandwidth and effort when used for normal communications.

108! Chapter 4: Implementation

Consider the case of a group of ten people collaborating on a research project.
If the group uses a large cc: list of email addresses, and includes Word attach-
ments in the development process, they are inevitably going to run into several
problems:

• Each message now takes up ten, one hundred, or even thousands of times
the storage space of a simple email. This makes everyone's email take
longer to upload and download, and wastes storage space on the server and
everyone's personal computer.

• The work flow of each user is interrupted as they must now download the
attachment and open it in a separate program. They must download every
attachment sent to the group, even if they do not need it for their work.

• Every user needs to have the same version of the program installed (in this
case, Word) or they will not be able to read the message. By contrast, plain
email can be read by hundreds of different email clients.

• Maintaining a consistent set of revisions is difficult or impossible, since users
tend to work asynchronously. Some may reply with revisions in email, while
others may respond with new Word documents. Someone on the team will
need to make sense of all of these revisions and maintain a single authorita-
tive copy of the work. This problem is known in project management circles
as versionitis.

• If the list of team members is maintained by hand, it is easy for people to be
accidentally (or intentionally) removed from the list, resulting in general con-
fusion.

• If any user has problems with their own computer (e.g., it is lost, damaged,
stolen, or infected by viruses), then any work they have not yet sent to the list
is permanently lost.

There is simply no need to indulge in these bad habits! You can be more effec-
tive and save bandwidth by using collaborative tools designed to make group
projects easy. Most organisations provide mailing list services free to their us-
ers. This makes management of the group discussion much simpler than trying
to maintain a list by hand. Mailing list software will often provide restrictions on
the type and size of file attachments, discouraging this bad habit. If the discus-
sion group is very large, web-based forum software can be implemented that
will allow any number of participants.

For project development, one very popular collaborative tool is the wiki. A wiki
is a web site that allows any user to edit the contents of any page. The wiki
can be protected by a simple password, an access control list (based on IP ad-
dress or other identifying information), or simply left open for public access. All
changes to the wiki are recorded, allowing users to view all revisions made to
the work. This effectively cures the revision control problem, provides excellent

! Chapter 4: Implementation! 109

backups for the work, and makes efficient use of available bandwidth. Attach-
ments (such as graphics, slideshows, and even Word documents) can be up-
loaded to any page and downloaded on demand. The resulting work can be
easily searched and linked to, just as with any web page. Users can be notified
of changes to the wiki via email or using Really Simple Syndication (RSS).

This book was developed using a wiki in conjunction with a mailing list. Trying
to manage a team of a dozen people scattered all over the world by using at-
tachments in email would have been nearly impossible, and would certainly
have been a waste of bandwidth.

If you are a user, ask your network administrator what tools are available for
collaborative work. If you are a network admin, see the list of resources at the
end of this chapter for many freely available software packages you can install
on your own network.

One last word about attachments
Consider what happens when you send a file attachment to a large group of
people. The flow of information may look something like Figure 4.1:

User sends 5MB e-mail
to 20 other users

E-mail server

5MB upload

E-mail server

5MB download x 20 = 100MB

Utilization is very high as users
download the attachment

Figure 4.1: A single unnecessary email attachment can quickly add up to hundreds of
megabytes of wasted bandwidth as users forward it to each other.

A single 5 Megabyte attachment can easily blossom to several hundred mega-
bytes of wasted information as it is forwarded between people on the network.
If the original sender had sent a hyperlink instead of the original file, consider-
able bandwidth would have been saved, while people could still easily view the

110! Chapter 4: Implementation

file when needed. Your users should consider this the next time they want to
send an attachment to their friends or colleagues.

Download managers & peer-to-peer clients
The word "client" is not exactly accurate when applied to peer-to-peer pro-
grams (such as BitTorrent, Gnutella, KaZaA, and eDonkey2000). These pro-
grams work by turning every computer into both a client and a server, where
users exchange information directly with each other. While this can be a tre-
mendous boon to publishers who use these protocols to avoid high bandwidth
costs, they can be a nightmare for network administrators. These programs
often maximise both inbound and outbound bandwidth, reducing the perform-
ance of other network services to a crawl. They will often aggressively attempt
to circumvent firewall restrictions, and can even disguise some of their protocol
information in order to avoid filtering. These programs continue to utilise out-
bound bandwidth even when the user has finished downloading, serving copies
of the retrieved data to the Internet at large.

So-called download managers can include peer-to-peer technology (some-
times referred to as swarming) in order to "speed up" user downloads. Exam-
ples of some of these types of download managers include FlashGet, GetRight,
Download Accelerator Plus, LimeWire Download Manager, DownloadThemAll
(DTA), and GetBot.

Internet

Figure 4.2: Peer-to-peer programs work by turning every node into a server that uploads
data to the others. This can be a boon on very fast and cheap networks, but it is

disastrous on slow and expensive connections such as VSAT.

The lure of these programs can be great for your users, since they promise fast
downloads of music, movies, and other data. Your operational policy should be

! Chapter 4: Implementation! 111

very clear about the use of peer-to-peer applications and download managers,
with regard to both legitimate and potentially infringing uses.

Users are often unaware that these programs introduce a heavy toll on a net-
work. They may not realise that their download manager is consuming re-
sources even when they are not using it. While many of these services can be
blocked or limited at the firewall, the best policy is simply not to use them on
low-bandwidth links. If they must be used, then use them to schedule large
downloads when the network is less busy, which can improve network perform-
ance for everyone. Make sure your users understand the impact that these
programs will have on the network.

Essential services
Now that your users have a clear understanding of your usage policy, as well
as an idea of general good practices, you can implement hard restrictions on
the flow of network traffic. The primary method for making your Internet con-
nection more responsive is to ensure that network usage never quite reaches
the available capacity. However large or complex your network installation, you
will likely make use of a few essential kinds of technology to ensure that your
Internet connection is used in an appropriate and efficient manner.

The most basic class of tool in the bandwidth management toolkit is the fire-
wall. A firewall can be thought of as a filter for network traffic. By making good
choices in your firewall configuration, you can allow legitimate traffic through,
and drop traffic destined for inappropriate services before it is transmitted to
your ISP. This allows the available bandwidth to be used exclusively for its in-
tended purpose. For example, by blocking access to peer-to-peer services,
considerable bandwidth can be saved, making email and the web servers more
responsive.

Firewalls can also add considerable security to your network by preventing ac-
cess to machines on your private network from the Internet. It is generally ac-
cepted as standard practice to have at least one firewall in place if you have a
connection to the Internet.

Caches exist everywhere in the computing field. The term cache means liter-
ally, to store. Most people are familiar with the web browser cache, which
keeps a local copy of content retrieved from the Internet. This local copy can
be retrieved and reused faster than making the same request from the Internet.
By using a cache, images and web pages can be displayed much more quickly
without making use of the Internet connection. Of course, information stored in
the cache may or may not be used again, so caches are only beneficial when
the cost of storing the information is less than the cost of retrieving the informa-

112! Chapter 4: Implementation

tion again. This cost is measured both in system resources (disk space and
RAM) and in time.

In addition to the cache available in your web browser, caching services can be
set up to be used by an entire network. Using a site-wide web cache can
save considerable bandwidth, since one user's visit to a popular site (such as
www.yahoo.com) will cause a local copy to be saved and automatically served
to other users who visit the same site. Other network services, such as DNS
lookups, may also be cached, considerably improving the "feel" of a connection
while saving Internet bandwidth for other uses.

Caches are typically implemented through use of a proxy server. This is a
kind of buffer or middleman between a computer and the Internet resources it
requests. A client makes a request of the proxy server, which then contacts the
web server (or other server) on its behalf. The response is sent back to the cli-
ent as if it had come from the original server. A socks proxy is a typical exam-
ple of this kind of server. Proxies can provide a controlled and secure way to
access resources that lie outside your firewall by requiring authentication from
the client. While proxies typically also include caching services, this is not re-
quired. You may wish to make use of a proxy server to provide access control
and an audit trail to monitor your users' usage patterns.

Internet

Proxy

1. Client requests web page
from proxy server

2. If it has no local copy,
the proxy retrieves the page

from the internet

3. The proxy saves
a local copy of

the retreived page
4. The client receives

the local copy

Internet

Proxy

Figure 4.3: Proxy servers make requests on behalf of a client program. They may also
implement authentication or caching.

Mirrors can be thought of as a kind of manually updated caching server.
Whole copies of popular websites and data stores can be stored locally, and
updated when network utilisation is low (after working hours, or in the middle of

! Chapter 4: Implementation! 113

the night). Users can then use the local mirror rather than requesting informa-
tion directly from the Internet. This can save considerable bandwidth, and is
much more responsive from a user's point of view, particularly at peak utilisa-
tion times. However, users must be aware of the existence of the mirror, and
know when to use it, otherwise it will waste bandwidth by downloading informa-
tion that is never used.

Email can become one of the most heavily abused services on a network, even
though legitimate email service itself may use relatively little bandwidth. Unless
your email servers are properly configured, they may allow unauthenticated
users to send messages to any destination. This is referred to as an open re-
lay, and such servers are often abused by spammers to send huge numbers of
messages to the Internet at large. In addition, spam and viruses can clog your
legitimate email services unless you employ an effective form of content filter-
ing. If your mail service is slow, or unreasonably difficult to use, then your us-
ers might turn to webmail services (such as Hotmail, Yahoo mail, or Gmail)
and waste even more bandwidth. If you offer email services to your users, then
these services must be properly configured to make the best possible use of
your Internet connection. Spam and viruses should be filtered before they
cross your Internet line (page 174), open relays should be closed (page 166),
and web mail services should be avoided.

By implementing these essential services (firewall, caching, mirrors, and proper
email configuration) you will make a significant impact on your bandwidth utili-
sation. These basic services should be considered mandatory for any network
connected to the Internet. For more advanced topics (such as bandwidth shap-
ing, fairness queueing, and protocol tweaks) see chapter six, Performance
Tuning.

Firewall
The word firewall refers to a physical barrier in a building or vehicle designed
to limit damage in the event of a fire. It prevents fire on one side of the wall
from spreading to the other. In a car, the firewall is generally a solid plate that
seals off the fuel tank or engine compartment from the passenger compart-
ment. In buildings, the firewall may be made of concrete or metal, and it seals
off different sections of the building. This provides protection from fire and pos-
sibly the total collapse of the structure.

The logical network firewall functions in a similar manner. Although, instead of
protecting your network against fire, it protects against undesirable traffic. For
example, it may deny access to peer-to-peer file sharing services on the
Internet, or to prevent unauthorised connections to servers inside your organi-
sation. The firewall can filter both inbound and outbound traffic. In order to do

114! Chapter 4: Implementation

this most effectively, the firewall needs to be located at the border where your
network meets the Internet.

Firewall

Internet

x

x

Outbound traffic to P2P
prohibited

Inbound traffic to P2P
prohibited

E-mail and web traffic
are permitted

Figure 4.4: Firewalls are most effective at the border between your network and the ex-
ternal world (e.g. the Internet).

Users may also choose to implement their own personal firewall. This pro-
vides a "last line of defense" for an individual computer by blocking access to
all (or most) services. Linux, BSD, Windows XP, and Mac OS X all have built-in
firewall support. There are also a number of third party firewall packages avail-
able for Windows; ZoneAlarm and Norton Firewall are two popular commer-
cial packages.

A personal firewall is a good idea if properly implemented, but for most users it
may seem like an inconvenience because some services (such as Voice-over-
IP) will not work properly unless the software is configured to allow such ac-
cess. Since users often disable their firewall when they are having trouble, it is
not a good idea to rely exclusively on personal firewalls to protect your network.

Firewalls can make filtering decisions based on any of the network layers from
two and above (see chapter three: Monitoring & Analysis for a discussion of
layered network models) but traditionally are grouped into two classes. Packet
filters operate at the Internet layer by inspecting source and destination IP ad-
dresses, port numbers, and protocols.

! Chapter 4: Implementation! 115

Router

Internet

x
Personal firewall

prevents attacks from
the Internet

Other machines are
unprotected

Figure 4.5: Personal firewalls can provide a small measure of protection, but should not
be relied upon to protect a large organisation.

Application firewalls operate at the top layer, and make filtering decisions
based on the application protocol being spoken. They tend to be more flexible
than simple packet filters, but they tend to require more in the way of system
resources. A packet filter may block all communications on port 80, while an
application firewall can block HTTP traffic on any port. One example of an ap-
plication firewall is L7-filter, http://l7-filter.sourceforge.net/.

Access philosophy
There is a very old joke floating around the Internet that goes something like
this:

In France, everything is permitted, except what is explicitly forbidden.
In Germany, everything is forbidden, except what is explicitly permitted.
In Russia, everything is forbidden, including what is explicitly permitted.
In Italy, everything is permitted, especially what is explicitly forbidden.

When building firewalls, you may choose to implement either of the first two
models as a general policy: the "French" model (everything that is not ex-
pressly forbidden is permitted) or the "German" model (everything that is not
expressly permitted is forbidden). While the first approach may seem easier
from a network administrator's point of view, it is far less secure, and can be
more difficult to maintain over the long term. It is much safer to err on the side
of denying traffic first, and make exceptions for legitimate traffic as the need
arises. If you are already monitoring your network extensively (as detailed in

116! Chapter 4: Implementation

chapter three), then you should have a good idea of which services your users
need to access.

For a solid network firewall, you will need to implement the following four rules
as a standard policy:

1. Allow already established and related connection traffic.
2. Allow TCP/IP SYN packets to the services you wish to permit.
3. Allow UDP packets to the services you wish to permit.
4. Deny ALL other traffic, and optionally log denied traffic to disk.

This configuration works well for the vast majority of networks connected to the
Internet. If your organisation requires support for other protocols as well (such
as GRE, which is required for VPN services such as PPTP), you can add those
exceptions just before step four. You may consider logging denied traffic to
disk in order to debug problems and detect attempts to circumvent your firewall.
But this can quickly fill up your disk on a very busy network or in the event of a
denial of service attack. Depending on your circumstances, you may wish to
only enable logging when you need to debug firewall problems.

Here are some examples of how to set up a good default firewall in Linux and
BSD.

Building a firewall in Linux
The firewall implemented in modern Linux kernels is called netfilter. Netfilter
is extremely powerful, flexible and complex, and a whole book could easily be
written on netfilter alone. We will only cover the very basics here. Full docu-
mentation is available at http://www.netfilter.org/.

Netfilter consists of kernel code that filters packets, and userspace programs to
control the kernel code. The interface that most people are familiar with is the
iptables command, which allows you to list and change the firewall rules
from the command line.

Netfilter rules are divided into sections called tables. The default table is the
filter table, but there are additional tables used for Network Address Transla-
tion and other purposes. Each table contains a number of processing phases,
called chains. Each chain in turn contains rules that determine the fate of any
packet that enters the chain. Each table and chain is used during a different
phase of the filtering process, allowing for very flexible packet matching.

! Chapter 4: Implementation! 117

There are three chains defined by the filter table:

• The INPUT chain is used for every packet destined for the firewall itself. For
example, packets bound for a web server or SSH server running on the fire-
wall itself must first traverse the INPUT chain.

• The OUTPUT chain is used for each packet generated by the firewall itself.
For example, web requests or SSH connections made from the firewall itself
first pass through the OUTPUT chain.

• The FORWARD chain is read for each packet passing through the firewall
that was not generated the firewall itself, or destined for it. This is where the
majority of filtering rules are inserted on firewall machines.

The nat table (for Network Address Translation) defines these chains:

• The PREROUTING chain is read for each packet passing through the fire-
wall, not generated by or destined for it.

• The OUTPUT chain is used for packets generated by the firewall itself, but is
executed before the OUTPUT stage of the filter table.

• The POSTROUTING chain is read for each packet passing through the fire-
wall, not generated by or destined for it.

Figure 4.6 shows the path that a packet takes as it passes through the netfilter
system when using NAT.

PREROUTING
(-t nat)

OUTPUT
(-t nat)

INPUT
(-t filter)

Local
processes

OUTPUT
(-t filter)

FORWARD
(-t filter)

POSTROUTING
(-t nat)

Inbound
packet

Outbound
packet

Figure 4.6: The netfilter process is applied to packets according to this schematic.

Each chain contains a number of rules. The kernel starts reading from the top
of the chain, beginning with the first rule. It checks the conditions on each rule

118! Chapter 4: Implementation

in turn, and if they match the packet, it executes the associated target on that
packet.

Some targets cause the packet processing to finish immediately. These targets
imply that a final decision has been made on what to do with the packet, such
as whether to accept (allow) or drop (discard) it. The ACCEPT, DROP, and
REJECT targets are examples of such terminating targets. Other targets cause
a side effect, but allow processing to continue. For example, the LOG target
writes some information about the packet to the system logs, but the packet will
continue to pass down the chain until it reaches a rule with a terminating target.

On most systems, support for netfilter is not built into the kernel, and must be
loaded as a kernel module. You should at least load the ip_tables,
iptable_filter, and ipt_state modules, as well as any other advanced
features you may want to use (such as iptable_nat and ipt_MASQUERADE
for NAT). Because these commands affect the system's security, only the root
user can run them. The following commands will load the basic modules:

modprobe ip_tables
modprobe iptable_filter
modprobe ipt_state

To load these at boot time, add the appropriate lines to /etc/modules.

Before configuring a firewall, you should make sure that the kernel is allowed to
act as a router, and will forward packets between interfaces. This is disabled by
default for safety. You can enable it temporarily with the following command:

echo 1 > /proc/sys/net/ipv4/ip_forward

This setting will be lost when the system is rebooted. Most systems have an
/etc/sysctl.conf file which defines default values for kernel variables like
this. You can make the change permanent by adding the following line:

net.ipv4.ip_forward = 1

and remove any existing line that refers to net.ipv4.ip_forward.

The normal state of each chain is empty, but some Linux distributions configure
a simple firewall automatically during installation. You can list the rules in each
chain with the following iptables commands:

iptables -L INPUT -n
iptables -L FORWARD -n
iptables -L OUTPUT -n

Each rule has a match condition, which specifies the packets that match the
rule, and a target, which is activated for each packet that matches the condi-

! Chapter 4: Implementation! 119

tions. For example, -p!tcp!-j!DROP matches TCP packets and discards
them.

Until you are more familiar with netfilter, you should only configure your firewall
from the physical console of the machine, and never over the network. It is very
easy to accidentally block your own access to the machine when configuring
netfilter remotely.

The chains in the filter table, INPUT, OUTPUT, and FORWARD, are required to
make a final decision for every packet that passes through the system. There-
fore, they have a policy which is applied to each packet that does not match
any rule in the chain. This can simply be thought of as the default target for the
entire chain. The policy must be set to ACCEPT or DROP, and the default is
ACCEPT. It is normally considered that a default ACCEPT policy is not secure,
and that you should change the default policy to be DROP. This is known as
deny by default, and fits with the "German" network security model. The fol-
lowing commands change the default policy for each chain to DROP:

iptables -P INPUT DROP
iptables -P OUTPUT DROP
iptables -P FORWARD DROP

To create your own firewall, you should delete any existing rules in the filter
chain, using the following command:

iptables -F

The filter table is used so often that it is implied when no explicit table is used.
This is functionally equivalent to the command:

iptables -t filter -F

...but is shorter to type. The -F option stands for flush. You can also Flush
individual chains:

iptables -F INPUT
iptables -F OUTPUT
iptables -F FORWARD

Now all traffic is blocked on the firewall, regardless of its source or destination.
To allow packets to pass through the firewall, you need to add rules which
match them using the ACCEPT target. The iptables!-A command appends
a new rule to the end of a chain. With a deny by default policy, it is common
practice to allow packets that are part of, or associated with, an established
connection. Since the connection was established in the first place, we assume
that subsequent packets in the same connection are also allowed.

120! Chapter 4: Implementation

The following commands allow such traffic into and through the firewall:

iptables -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
iptables -A FORWARD -m state --state ESTABLISHED,RELATED -j ACCEPT
iptables -A OUTPUT -m state --state ESTABLISHED,RELATED -j ACCEPT

With established connections permitted, you can now specify the new TCP
connections that should be permitted into the firewall. These should correspond
to services running on the firewall itself that should be permitted. In this case,
we will allow access to SSH (port 22), HTTP (port 80), SMTP (port 25), and
TCP DNS (port 53) services on the firewall. Note that no new connections may
be made through the firewall yet, as these rules only open connections for serv-
ices on the firewall itself.

iptables -A INPUT -p tcp --dport 22 -m state --state NEW -j ACCEPT
iptables -A INPUT -p tcp --dport 80 -m state --state NEW -j ACCEPT
iptables -A INPUT -p tcp --dport 25 -m state --state NEW -j ACCEPT
iptables -A INPUT -p tcp --dport 53 -m state --state NEW -j ACCEPT

These rules each have multiple conditions that must be met in order to be ac-
cepted. For example, the first rule matches only if:

• The protocol of the packet is TCP, and

• The TCP destination port is 22 (SSH), and

• The state is NEW.

When a rule contains multiple conditions, they must all match before the target
will be executed.

The rules above also make use of netfilter's stateful inspection features, also
known as connection tracking. The rules match on the state associated with
the packet. The state is not part of the packet as transmitted over the Internet.
Instead, they are determined by the firewall itself, after comparing the packet
with each connection that it knows about:

• If the packet is part of an existing connection, its state is ESTABLISHED;
otherwise:

• If the packet is related to an existing connection, such as an ICMP destina-
tion unreachable reply to a TCP packet sent earlier, its state is RELATED;
otherwise:

• Its state is NEW.

Every NEW or RELATED packet adds a temporary entry to the connection
tracking table, and every ESTABLISHED packet extends the life of the entry. If
a connection is established through the firewall, but it sees no activity for some

! Chapter 4: Implementation! 121

period of time, the entry in the table will expire, and further packets will be re-
garded as NEW again, rather than ESTABLISHED.

You cannot use the --sport and --dport options (which match the source
and destination ports) unless you specify the protocol with -p!tcp or -p!udp.
It is not possible to write a single rule that matches both TCP and UDP packets
and specifies port numbers.

Some types of UDP traffic are very useful. For example, DNS requests are
normally made over UDP rather than TCP. If the firewall runs a DNS server,
then you will probably want to allow UDP port 53 traffic into it, with the following
command:

iptables -A INPUT -p udp --dport 53 -j ACCEPT

If your users use a DNS server out on the Internet, then you will need to give
them access to it. Replace 10.20.30.40 with the DNS server's IP address in the
following command:

iptables -A FORWARD -p udp --dport 53 -d 10.20.30.40 -j ACCEPT

If you use globally routable IP addresses throughout your organisation, you
may want to allow your users to have direct access to the Internet. This can be
enabled with this command:

iptables -A FORWARD -j ACCEPT

Alternatively, you may wish to force them to use a proxy to access the Internet.
The proxy server should be the only computer that's allowed to make connec-
tions out onto the Internet. If the proxy server runs on the firewall itself, then the
firewall must be allowed to make outgoing connections:

iptables -A OUTPUT -j ACCEPT

If the proxy server is another computer inside your network, you will need a rule
like this, replacing 10.10.10.20 with the proxy server's IP address:

iptables -A FORWARD -s 10.10.10.20 -j ACCEPT

The options -s and -d in the commands above match source and destination
addresses respectively. You can specify a range of addresses with a network
mask, for example -s!10.10.50.0/24 matches all source addresses from
10.10.50.0 to 10.10.50.255.

You can make your rules more explicit by specifying interfaces. The -i option
matches the incoming interface, and -o matches the outgoing interface. You
cannot specify -o for rules in the INPUT chain, because packets passing

122! Chapter 4: Implementation

through INPUT will not leave the firewall, so they have no outbound interface.
Similarly, you cannot specify -i for rules in the OUTPUT chain, but you can
specify either or both for rules in the FORWARD chain. For example, if you
want to allow traffic from 10.10.10.30 through the firewall, but only if it comes in
on the eth0 interface and leaves on eth1:

iptables -A FORWARD -s 10.10.10.30 -i eth0 -o eth1 -j ACCEPT

You may wish to allow ICMP packets in both directions, to allow the ping and
traceroute commands to work to and from the firewall itself:

iptables -A INPUT -p icmp -j ACCEPT
iptables -A OUTPUT -p icmp -j ACCEPT

And you may wish to allow users on your inside network (e.g. eth0) to run ping
and traceroute to the outside world (e.g. eth1) as well:

iptables -A FORWARD -i eth0 -o eth1 -p icmp -j ACCEPT
iptables -A FORWARD -i eth1 -o eth0 -p icmp -j ACCEPT

All the iptables commands above start with the -A option, which appends
the specified rule to the end of the specified chain. Other useful options are:

• -L!<chain> lists the rules in the specified chain, with the following useful
options:
-n stops the iptables command from trying to resolve IP addresses to
hostnames. If running iptables -L seems to hang, you may be waiting
for DNS resolution. Add -n to see the list immediately using just IP ad-
dresses.
-v lists all details of the rules, including input and output interfaces and
byte and packet counters
--line-numbers gives the rule number next to each rule, which is useful
for the -D and -I options

• -D!<chain>!<rule> deletes the first rule matching the specification from
the specified chain

• -D!<chain>!<number> deletes the specified rule number from the speci-
fied chain

• -I ! <chain> ! <number> ! <rule> inserts the specified rule before the
specified rule number in the chain

The packet and byte counters, shown with iptables!-L!-v, are very useful
for debugging and optimising rules. The packet counter is increased by one
every time a packet matches the rule. If you create a rule and it doesn't seem
to be working, check the packet counter to see whether it is being matched. If

! Chapter 4: Implementation! 123

not, then either the specification is wrong, or an earlier rule is capturing the
packets that you wanted to match. You can try moving the rule higher up the
chain (delete and re-insert it), or removing conditions until it starts to match.

If your firewall has very heavy traffic, you should optimise your rules so that the
ones with the highest packet counters are higher up the chains. In other words,
the rules should be in descending order by packet count. However, you should
be careful not to violate your security policy by doing so. Rules which might
match the same packets under any circumstances should not be reversed in
order without careful thought.

It is also a good idea to add a LOG rule at the end of each chain, so that you
can see from your firewall logs (/var/log/messages) which packets are not
matching any rules. This can be useful for debugging and for spotting attacks
on your firewall and network. You may wish to limit the rate of logging with the
limit match, to avoid filling up your logs too fast:

iptables -A INPUT -m limit --limit 10/min -j LOG

Other useful targets include REJECT, which is like DROP in that the packet is
not allowed to pass through the firewall. However, while DROP is silent, RE-
JECT sends an ICMP destination unreachable message back to the originator.
REJECT is more polite, because it tells the sender what happened to their
packet, but DROP is more secure because it provides an attacker with less in-
formation and makes it much slower to scan your machine for open ports. You
may want to consider dropping ICMP echo-request packets from outside your
network for security reasons:

iptables -A INPUT -p icmp --icmp-type echo-request -j DROP

You should ensure that this rule comes before any rule which allows ICMP
packets in the INPUT chain (otherwise it will have no effect).

You can use NAT to rewrite the source address of packets forwarded by your
firewall, to make them appear to have come from the firewall itself. This is
called masquerading, and is very useful if your internal network uses a private
IP address range. For example, if your internal network uses 192.168.1.0/24,
and the external interface is eth1, then you could use the following command:

iptables -t nat -A POSTROUTING -s 192.168.1.0/24 -o eth1 -j MASQUERADE

Once you are finished adding exceptions, test each of the rules from inside and
outside your network. You can make connections manually, or use a security
scanning tool such as nmap (http://insecure.org/nmap/).

124! Chapter 4: Implementation

The ruleset will be lost when the system is rebooted unless you save it first. On
Debian (and Ubuntu) systems, you will need to install the iptables
initscript:

zcat /usr/share/doc/iptables/examples/oldinitscript.gz > /etc/init.d/iptables
chmod a+x /etc/init.d/iptables
ln -s /etc/init.d/iptables /etc/rcS.d/S39iptables

No other distribution makes it this difficult to use iptables. Normally you just
have to make sure that iptables is started at boot:

chkconfig iptables on

Whenever you update your ruleset and want to save your changes, use the
following command on Debian/Ubuntu:

/etc/init.d/iptables save active

And on other distributions:

/etc/init.d/iptables save

You can discard the current ruleset and reload the last saved one with:

/etc/init.d/iptables restart

You can find more about netfilter from the following resources:

• iptables manual page. EIther run man!iptables or see:
http://www.linuxguruz.com/iptables/howto/maniptables.html

• Packet Filtering HOWTO:
http://www.netfilter.org/documentation/HOWTO/packet-filtering-HOWTO-7.html

• Network Address Translation HOWTO :
http://www.netfilter.org/documentation/HOWTO/NAT-HOWTO.html

• Netfilter documentation: http://www.netfilter.org/documentation/

BWM Tools
BWM Tools (http://freshmeat.net/projects/bwmtools/) is a Linux utility which
provides a wrapper to iptables, allowing all of its features to be configured
using an easy XML syntax. Firewalling, bandwidth shaping, logging, and graph-
ing are all supported.

BWM Tools consists of two main utilities. bwm_firewall is used for building
the firewall rules, and bwmd is used for traffic shaping. BWM Tools works by
queueing packets in userspace, where they are inspected, queued, rate limited,
and given the go-ahead to pass. Live bandwidth graphs can be generated from

! Chapter 4: Implementation! 125

any flow by using RRDtool file formats along with rrd-cgi, which provides for
a good overall health check on networks.

More information about configuring and installing BWM Tools can be found at
http://bwm-tools.pr.linuxrulz.org/doc/.

Below is a simple stateful firewalling example that allows SSH, SMTP, and DNS
traffic to be received.

<firewall>
 # Global configuration and access classes
 <global>
 <modules>
 # Track FTP connections
 <load name="ip_nat_ftp"/>
 <load name="ip_conntrack_ftp"/>
 </modules>

 # Setup traffic classification classes
 <class name="ssh">
 <address proto="tcp" dport="22" />
 </class>

 <class name="smtp">
 <address proto="tcp" dport="25"/>
 </class>

 <class name="http">
 <address proto="tcp" dst-port="80"/>
 </class>

 <class name="dns_tcp">
 <address proto="tcp" dst-port="53"/>
 </class>

 <class name="dns_udp">
 <address proto="udp" dst-port="53"/>
 </class>

 <class name="new_connections">
 <address proto="tcp" cmd-line="--syn -m state --state NEW"/>
 </class>

 <class name="valid_traffic">
 <address cmd-line="-m state --state ESTABLISHED,RELATED"/>
 </class>
 </global>

 # Access list
 <acl>
 # Filter table
 <table name="filter">
 # Allow only SYN packets here...

126! Chapter 4: Implementation

 <chain name="new_connections">
 <rule target="ACCEPT">
 ssh;
 smtp;
 http;
 dns_tcp;
 </rule>
 </chain>

 # Deny-all default policy
 <chain name="INPUT" default="DROP">
 # Accept valid traffic, and UDP as its stateless
 <rule target="ACCEPT>
 valid_traffic;
 dns_udp;
 </rule>
 # Match SYN packets (tcp) and jump to new_connections
 <rule target="new_connections">
 new_connections;
 </rule>
 </chain>

 # Accept output from ourselves
 <chain name="OUTPUT" default="ACCEPT">
 </chain>

 # Allow valid forwarded traffic, if we had any
 <chain name="FORWARD" default="DROP">
 <rule target="ACCEPT>
 valid_traffic;
 </rule>
 </chain>
 </table>
 </acl>
</firewall>

Shorewall
Shorewall (http://shorewall.net/) is a tool that can make setting up a firewall
easier than using pure iptables commands. It is not a daemon or service, but
is simply a tool that is used to configure netfilter.

Rather than dealing with the sometimes confusing tables, chains, and rules of
netfilter, Shorewall abstracts the firewall configuration into a number of easy-to-
read files that define interfaces, networks, and the sort of traffic that should be
accepted. Shorewall then uses these files to generate the applicable netfilter
rules.

There is an excellent configuration guide and basic introduction to networking
concepts at: http://shorewall.net/shorewall_setup_guide.htm

! Chapter 4: Implementation! 127

Building a firewall in BSD
There are three firewalling systems in BSD, which are not compatible with each
other. IPFW is the oldest and most efficient, but does not have as many fea-
tures as the others. IPF was created to enhance IPFW, but the author decided
to restrict its license, and so it is not completely free. PF was created as a free
replacement for IPF. PF offers the most features, including packet shaping, but
is claimed to be less efficient than IPFW. We will give simple examples of using
IPFW and PF.

You can find out more about the relative benefits of each firewall here:

• http://lists.freebsd.org/pipermail/freebsd-ipfw/2004-December/001583.html

• http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/firewalls.html

In order to create a useful firewall, you will need to enable packet forwarding
through your machine. This can be done with the following command:

sysctl net.inet.ip.forwarding=1

To make this change permanent, assuming that packet forwarding is disabled,
add the following line to /etc/sysctl.conf:

net.inet.ip.forwarding=1

To build a firewall with IPFW, first enable IPFW functionality in the kernel. The
procedure varies between different BSDs. The method described here is for
FreeBSD.

cd /usr/src/sys/i386/conf/
cp GENERIC MYFIREWALL

Open MYFIREWALL with your favorite text editor. At the bottom of the file add
these lines:

options IPFIREWALL
options IPFIREWALL_VERBOSE
options IPFIREWALL_FORWARD
options IPFIREWALL_VERBOSE_LIMIT=100
options IPFIREWALL_DEFAULT_TO_ACCEPT

Save your work and compile the kernel with the following commands:

/usr/sbin/config MYFIREWALL
cd ../compile/MYFIREWALL
make cleandepend
make depend
make
make install

128! Chapter 4: Implementation

To ensure that the firewall is activated at boot time, edit the file
/etc/rc.conf and add the following lines:

gateway_enable="YES"
firewall_enable="YES"
firewall_type="myfirewall"
firewall_quiet="NO"

Now reboot the computer to ensure that the firewall is active.

Edit the /etc/rc.firewall file and adapt it to your needs. You can apply the
new rules with the command sh /etc/rc.firewall.

For more information on configuring IPFW, please refer to the manual page
(man!ipfw) and the FreeBSD Website:

http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/firewalls-ipfw.html

To activate PF, you should first enable it in the kernel. The procedure varies
between different BSDs. The method described here is for FreeBSD.

cd /usr/src/sys/i386/conf/
cp GENERIC MYFIREWALL

Then add the following at the bottom of MYFIREWALL:

device pf
device pflog
device pfsync

Save the file and then recompile your kernel.

To ensure that PF is activated at boot time and logging is enabled, add this to
/etc/rc.conf:

gateway_enable="YES"
pf_enable="YES"
pf_rules="/etc/pf.conf"
pf_flags=""
pflog_enable="YES"
pflog_logfile="/var/log/pflog"
pflog_flags=""

Now reboot the machine to ensure that PF is loaded. You should be able to run
the following commands:

• pfctl!-e to enable PF

! Chapter 4: Implementation! 129

• pfctl!-s!all to show list all firewall rules and status

• pfctl!-d to disable PF

Edit the /etc/pf.conf file and uncomment all the lines that apply to your
setup. You can apply the new rule set with the command
pfctl!-f!/etc/pf.conf.

You can find out more about configuring PF in the manual page
(man!pf.conf) and the OpenBSD website:

http://www.openbsd.org/faq/pf/

Transparent bridging firewall in FreeBSD
Chances are good that if you are low on bandwidth, you are also short on IP
addresses. Many organisations only have a few public IP addresses - perhaps
one for the router and another for the proxy server. So how do you introduce a
firewall without having to restructure the network or use yet another valuable IP
address?

One way to do this is to use a transparent bridging firewall. Such a firewall
does not require an IP address, and is able to to protect your LAN, route traffic,
and be integrated seamlessly into the network. As your network grows, you can
add capacity by simply adding more network cards. FreeBSD has a special
feature in its kernel that allows it to function as a bridge, after which you can
use any of the firewall programs available in FreeBSD (including IPFW, PF, or
IPF). To build a transparent firewall with IPFW, first enable IPFW and bridging
functionality in the kernel.

cd /usr/src/sys/i386/conf/
cp GENERIC MYFIREWALL

Open MYFIREWALL with your favorite text editor. At the bottom of the file add
these lines:

options IPFIREWALL ! #firewall
options IPFIREWALL_VERBOSE ! #enable logging to syslogd(8)
options IPFIREWALL_FORWARD ! #transparent proxy support
options IPFIREWALL_VERBOSE_LIMIT=100! #limit verbosity
options IPFIREWALL_DEFAULT_TO_ACCEPT! #allow everything by default
options BRIDGE

Save your work and compile the kernel with the following commands:

/usr/sbin/config MYFIREWALL
cd ../compile/MYFIREWALL
make cleandepend
make depend
make && make install

130! Chapter 4: Implementation

To ensure that the firewall is activated at boot time, edit the file /etc/rc.conf
and add the following lines:

gateway_enable="YES"
firewall_enable="YES"
firewall_type="myfirewall"
firewall_quiet="NO"

Next, we need to tell FreeBSD which interfaces will be bridged together. This is
done by editing /etc/sysctl.conf to include the following:

net.link.ether.bridge.enable=1
net.link.ether.bridge.config=if1,if2
net.link.ether.bridge.ipfw=1

Replace if1 and if2 with your network interfaces. Finally, you can edit
/etc/rc.firewall and insert your desired filtering rules.

To activate bridging with PF, you should first enable PF and bridging support in
the kernel.

cd /usr/src/sys/i386/conf/
cp GENERIC MYFIREWALL

Then add the following at the bottom of MYFIREWALL:

device pf
device pflog
device pfsync
options BRIDGE

Save the file and then recompile your kernel. To ensure that PF is activated at
boot time and logging is enabled, add this to /etc/rc.conf:

gateway_enable="YES"
pf_enable="YES"
pf_rules="/etc/pf.conf"
pf_flags=""
pflog_enable="YES"
pflog_logfile="/var/log/pflog"
pflog_flags=""

For PF, you also need to create a bridge interface with the names of the net-
work cards you want to use. Add the following to /etc/rc.conf, replacing
xl0 and xl1 with the network devices on your computer:

cloned_interfaces="bridge0"
ifconfig_bridge0="addm xl0 addm xl1 up"

! Chapter 4: Implementation! 131

To ensure the two network interfaces are activated at boot, add the following to
/etc/rc.local:

ifconfig xl0 up
ifconfig xl1 up

Then activate filtering on the two interfaces by adding these lines to
/etc/sysctl.conf:

net.link.bridge.pfil_member=1
net.link.bridge.pfil_bridge=1
net.inet6.ip6.forwarding=1
net.inet.ip.forwarding=1

Finally, you can build a transparent bridging firewall using IPF. IPF support is
already active on a FreeBSD install, but bridging is not. To use IPF, first enable
bridging in the kernel:

cd /usr/src/sys/i386/conf/
cp GENERIC MYFIREWALL

Add these lines to MYFIREWALL:

options BRIDGE
options IPFILTER
options IPFILTER_LOG
options IPFILTER_DEFAULT_BLOCK

Then rebuild the kernel as described above. To activate IPF at boot time, edit
/etc/rc.conf and add these lines:

ipfilter_enable="YES" # Start ipf firewall
ipfilter_program="/sbin/ipf"
ipfilter_rules="/etc/ipf.rules" # loads rules definition text file

Now edit /etc/sysctl.conf in order to create the bridged interfaces. Add
the following lines, replacing xl1 and fxp0 for your Ethernet devices.

net.link.ether.bridge.enable=1
net.link.ether.bridge_ipf=1
net.link.ether.bridge.config=xl1:0,fxp0:0,xl0:1,rl0:1
net.inet.ip.forwarding=1

You can also create separate VLANs with this method. If you have four net-
work cards, you can bridge them in pairs to create two separate networks. In
the example on the next page, xl1:0 and fxp0:0 will bridge one network
segment while xl0:1 and rl0:1 will bridge another.

132! Chapter 4: Implementation

net.link.ether.bridge.enable=1
net.link.ether.bridge_ipf=1
net.link.ether.bridge.config=xl1:0,fxp0:0,xl0:1,rl0:1
net.inet.ip.forwarding=1

Transparent bridging firewall in Linux
The Linux kernel also supports bridging and firewalling. In version 2.4, this re-
quired an optional patch, but in version 2.6 it is enabled by default. You only
need to make sure that the BRIDGE_NETFILTER option is enabled. To check
this, run the make!menuconfig command in the kernel source directory and
select the following options:

• Device Drivers

• Networking support

• Networking options

• Network packet filtering

• Bridged IP/ARP packets filtering

Ensure that the last option is enabled, with an asterisk (*) in the box. If you had
to change any options, recompile your kernel with the make command, and
install it with make!install. Finally, reboot the machine to load the new ker-
nel.

Bring down the network devices that you want to bridge together, e.g. eth0 and
eth1:

ifconfig eth0 down
ifconfig eth1 down

Create a new bridge interface with the following command:

brctl addbr br0

Add the network devices that you want to bridge together to the bridge device:

brctl addif br0 eth0
brctl addif br0 eth1

Bring all the interfaces up:

ifconfig br0 up
ifconfig eth0 up
ifconfig eth1 up

! Chapter 4: Implementation! 133

Manually assign an IP address to the bridge, e.g.:

ifconfig br0 10.20.30.40 netmask 255.255.255.0

Now you should be able to write iptables firewall rules that control traffic
through the bridge by specifying -i!br0 and/or -o!br0. For example, to allow
all traffic through the bridge:

iptables -A FORWARD -i br0 -o br0 -j ACCEPT

To block all packets on port 80 from passing through the bridge:

iptables -A FORWARD -i br0 -o br0 -p tcp --dport 80 -j DROP

You can also use physdev-in and physdev-out to match the actual physi-
cal device on which the packet entered or left the firewall:

iptables -A FORWARD -i br0 -o br0 -m physdev --physdev-in eth0 \
 --physdev-out eth1 -p tcp --dport 80 -j DROP

The above rule will drop packets to TCP port 80 (HTTP) going from eth0 to
eth1, but not the other way around. The bridge configuration will be lost when
you reboot your machine, so you may wish to add the commands to create the
bridge to /etc/rc.d/rc.local, or the equivalent file on your distribution.

Note that once you add an interface to a bridge with brctl addif, netfilter
will see packets through that interface as coming from or going to the bridge
device (br0) instead of the real physical interface. You will need to adjust any
existing firewall rules that refer to real physical devices, such as -i eth0 or
-o eth1, replacing the device name with br0.

Summary
Firewalls are an important way to control access to and from your network. You
could think of them as being like locks on the doors of a house: they are neces-
sary, but not sufficient for high security. Also, firewalls normally work on IP
packets and connections, but there are times when you want more control over
what can be done at the application layer, for example blocking certain web-
sites and other content. This can be done through the use of an application
layer firewall, such as a web proxy with access control (e.g. Squid).

Caching
It takes time to retrieve information from sources on the Internet. The amount
of time it takes depends on a variety of factors, such as the distance to the des-
tination and how many other people are requesting data at the same time.
Greater distances between the server and client mean longer delays when

134! Chapter 4: Implementation

sending and receiving data, since (as far as we know) electrical signals are
bounded by the speed of light. When you consider the route a single packet
may need to travel in order to reach California from Nairobi (up 35 000 Km to a
satellite, 35 000 Km back down again, then across the ocean, possibly through
another satellite trip, and across an entire continent halfway around the world,
and then back again) it's no wonder that there is an upper limit to how fast in-
formation can travel across the net.

While we can't do much about changing the speed of light, we can definitely
address the problem of too many people requesting information at once. Much
of the information requested from the Internet is web traffic. If we can keep a
local copy of data retrieved from the web, and intercept subsequent requests
for the same information and serve the local copy instead, we can free up sig-
nificant bandwidth for other uses, and greatly improve the overall feel of the
network. Serving images from a local cache may take a few milliseconds, as
compared with hundreds (or thousands) of milliseconds to retrieve the same
data from distant Internet sites.

Web traffic is the most obvious service that can benefit from a cache, but just
about any service that doesn't deal with realtime data can be cached. Pre-
recorded video streams can be cached, but live video cannot. Voicemail sys-
tems can be cached, but Voice over IP (VoIP) cannot. One service that should
definitely be cached is DNS. Since virtually every other service makes use of
hostname-to-IP address lookups, caching DNS will help "speed" up nearly eve-
rything else on the network, while saving bandwidth for other uses.

In this section, we will see specific examples that illustrate how to implement
both web and DNS caching on your network.

Web caching
As mentioned earlier, caching web proxies work in much the same way as
does a local browser cache. By saving requested information to a local disk,
data is then served on subsequent requests to anyone on the network who
needs it. How much can you really save with a web cache such as Squid?
While this varies depending on your traffic profile, you can expect to save, on
average, between 20% and 30% of your bandwidth. As your users request
more cacheable data, and the more those requests overlap, the more band-
width you will save.

There are literately hundreds of web caches made available by the open
source community and commercial vendors. Squid is undoubtedly the most
popular web caching software available. It is mature, robust, very fast, and
completely open source. In this book we will mainly concentrate on the Squid
proxy server, but if you are running another proxy server the general concepts
will still apply.

! Chapter 4: Implementation! 135

Internet

http://yahoo.com/

Caching
Proxy

http://yahoo.com/http://yahoo.com/http://yahoo.com/

Figure 4.7: Caching proxy servers act as a shared web browser disk cache for all of the
users in your network.

Besides saving Internet bandwidth, authenticating cache servers can provide
you with increased control over the ways in which the network is used. When
network usage is logged per user, you can then implement various kinds of be-
haviour modifying techniques, such as quotas or billing. The cache server also
gives you a central place from which to watch the browsing habits of your us-
ers. The logs that are produced by the proxy server are useful when combined
with a log file analysis tool such as Webalizer or Analog (page 81). Other fea-
tures include:

• Bandwidth limiting / traffic shaping. By implementing delay pools in Squid
(page 189), you can prioritise traffic in ways that make use of network re-
sources in an equitable manner.

• Redirection and content filtering. This allows you to block advertisements,
resample images, or make other changes to the content before it reaches the
client. You can also redirect users to a page of your choice based on certain
criteria.

• Advanced Access Control List (ACL) processing. ACLs allow you to per-
form firewall-like features at the application layer (for example, blocking some
users while letting others through based on their credentials, IP address, or
even time of day).

• Peer caching. This allows large sites to use multiple caches and share the
cached files between them. By using peer caching you can scale your cache
services to networks of any size.

136! Chapter 4: Implementation

When properly implemented, cache servers can have a significant impact on
your bandwidth usage (even before traffic shaping and other access modifica-
tion tools have been applied).

The caching server and the Firewall
The more a cache server is used, the more effective it will become. Your web
cache is not fully effective unless it is used consistently throughout your organi-
sation. If your users can easily bypass the proxy, they will certainly do so for a
variety of reasons. They may not like the idea of all of their network requests
being logged and monitored. If you have implemented delay pools or other
access restrictions, they may notice that bypassing the proxy increases their
performance. This is equivalent to cutting in line at a crowded theater. It may
work for one user, but it is cheating, and can't work for everyone.

A proxy server necessarily goes hand-in-hand with a good firewall (page 114).
Configuring the firewall to only allow web access via the proxy is one way to
ensure that the caching proxy is the only way that users can access the web.
Of course, having a firewall doesn't do much good if it isn't properly configured.

Internet

Firewall

PC PC PC

x

Proxy server is
granted full accessDirect access is

forbidden
by the firewall

Proxy Server

Figure 4.8: Firewalls should be used to enforce use of the caching proxy. With a good
firewall in place, the only way to access web content is via the proxy.

It is a common mistake to install a firewall for security, but to allow outbound
access to the HTTP/FTP ports (TCP ports 80 and 21). Although you are pro-
tecting your network with the firewall, you are not forcing your users to use the
cache server. Since your users are not forced to use the cache server, users
that access the web directly are potentially wasting bandwidth. This also be-

! Chapter 4: Implementation! 137

comes a problem when you authenticate users on your cache server and rely
on those logs to determine network usage.

Smaller networks can often install a cache server on the same server as the
firewall. In larger networks, the cache server is placed somewhere on the in-
ternal network. On very busy networks, multiple cache servers may be used.

Transparent versus manual caches
A transparent cache is a caching server that works without any explicit proxy
configuration on the client. All web traffic is silently redirected to the cache, and
responses are returned to the client. This configuration is sometimes called an
interception caching server.

With a traditional cache, the client is configured to use the cache server by ei-
ther manually setting the proxy settings in the browser preferences, or by using
an automatic configuration URL (page 140). Transparent caches require no
configuration on the client side. As far as the client knows, they are receiving
web pages directly from the originating servers.

Internet

Transparent
Cache

Customer
Router ISP Router

(WAN)

Figure 4.9: Transparent caches can be used by ISPs to save bandwidth by locally cach-
ing requests made by their customers.

Transparent caching can make problem solving difficult, as the user may not be
aware that their requests are being served by the cache server and not from
the original website. Transparent caching also makes proxy authentication im-
possible, since no credentials are presented to the cache server. This removes
the ability to log and create "accountability" reports. While you can still log
based on source IP address, reports at the user level can only be achieved by

138! Chapter 4: Implementation

using authentication. The only real advantage in using a transparent cache is
that the clients do not need to be configured. For installations with casual users
who bring their own equipment (as is the case in cafes or public labs) this can
help to reduce support requests. Transparent caches are often used as up-
stream caches in the ISP environment.

Transparent caching can be an involved process as it depends on specific fea-
tures in your firewall and kernel. To learn how to setup a transparent cache
with Squid, and various other firewalls, see the documentation at:
http://www.squid-cache.org/Doc/FAQ/FAQ-17.html

Running Squid
Squid is the premier open source web caching proxy server originally devel-
oped by Duane Wessels. Squid has been around for over ten years and is
probably the most popular web caching server in use today.

To quote from the Squid wiki;

"Squid is a high-performance proxy caching server for web clients, sup-
porting FTP, gopher, and HTTP data objects. Unlike traditional caching
software, Squid handles all requests in a single, non-blocking, I/O-driven
process. Squid keeps meta data and especially hot objects cached in
RAM, caches DNS lookups, supports non-blocking DNS lookups, and im-
plements negative caching of failed requests. Squid supports SSL, exten-
sive access controls, and full request logging. By using the lightweight
Internet Cache Protocol, Squid caches can be arranged in a hierarchy or
mesh for additional bandwidth savings. Squid consists of a main server
program squid, an optional Domain Name System lookup program
dnsserver (Squid nowadays implements the DNS protocol on its own by
default), some optional programs for rewriting requests and performing
authentication, and some management and client tools."

You can download Squid from http://www.squid-cache.org/. It is also available
as a standard package in most Linux distributions. A Windows port is also
available at http://www.acmeconsulting.it/SquidNT/. For most installations, the
default Squid build included in your system package is probably sufficient. In
some circumstances you may want to rebuild Squid from source.

Some options, such as delay pools and a few of the authentication helpers,
require a recompile. You may also want to recompile Squid, for large installa-
tions, to increase the number of available file descriptors (the default is 1024).
You should monitor your Squid box with the cachemgr interface to determine if
you have sufficient file descriptors. Detailed instructions on how to increase
your file descriptors are available in the Squid FAQ at
http://www.squid-cache.org/Doc/FAQ/FAQ-11.html#ss11.4.

! Chapter 4: Implementation! 139

A Squid configuration file can be as simple as four lines:

http_port 3128
cache_mgr your@email.address.here
acl our_networks src 192.168.1.0/24
http_access allow our_networks

Change the network ACL to reflect your IP address range, add a contact email
address, and that's it. Save the file as /etc/squid.conf.

When you run Squid for the first time, you will have to initialise the cache direc-
tory. To do this, run Squid with the -z switch:

squid -z

Finally, run squid with no other parameters to launch the Squid daemon.

squid

Congratulations, you now have a caching web proxy! All that's left now is to
configure your users' browsers to use the proxy. If you only administer a few
computers, you can do that manually. For larger installations, it can be easier
to enable automatic proxy configuration (see the next section).

While this example will get you started, Squid can be fine-tuned to optimise
networks of just about any size. Full documentation is available at
http://www.visolve.com/squid/. For more advanced features, see the Per-
formance Tuning chapter on page 177. Many more tips and techniques are
also available on the Squid Wiki at http://wiki.squid-cache.org/.

Automatic web proxy configuration
As mentioned earlier, the main advantage of transparent proxies is that the
cache can be used automatically without changing browser settings. The trade-
off for this convenience is that some proxy features, such as authentication,
cannot be used. One alternative to using transparent proxies is an automatic
proxy configuration. This technique allows browsers to automatically detect
the presence of the proxy, and works with all proxy features (including authenti-
cation).

When configured for automatic proxy discovery, the browser requests a file that
defines which proxy to use for a given URL. The file contains javascript code
that defines the function FindProxyForURL. It looks like this:

function FindProxyForURL(url, host)
 {
 ...
 }

140! Chapter 4: Implementation

This script should return a string that defines the proxy server to be used (in the
format PROXY host:port), or if a SOCKS proxy is used, it should return the
string SOCKS host:port. The string DIRECT should be returned if a proxy is
not needed. This function is run for every request, so you can define different
values for different URLs or hosts. There are also several functions that can be
called in the script to help determine what action to take. For example, is-
PlainHostName(host) returns true if there is no domain specified for the
given host, and isResolvable(host) returns true if the host name resolves
to an IP address.

The file containing the FindProxyForURL function is usually given a .pac
extension (short for Proxy Auto Configuration) and is placed in a directory on
a local web server.

Here is an example config.pac file that returns DIRECT for plain host names
and local sites, and returns a proxy for everything else:

function FindProxyForURL(url, host)
 {
 if (isPlainHostName(host) ||
 dnsDomainIs(host, ".mydomain.com"))
 return "DIRECT";
 if (isInNet(host, "10.1.0.0", "255.255.0.0"))
 return "DIRECT";
 else
 return "PROXY proxy.mydomain.com:8080";
 }

You may also need to tell your web server to associate .pac with the proper
mime type. Make sure there is an entry like this in the mime.types file for
your web server:

application/x-ns-proxy-autoconfig pac

A full description of FindProxyForURL can be found online at
http://wp.netscape.com/eng/mozilla/2.0/relnotes/demo/proxy-live.html.

Now that we have a working config.pac, how do we tell our clients to use it?
There are three ways to do it: by direct configuration in the browser, with a
DNS entry, or via DHCP.

Most browsers have a place in their preferences or settings where the URL to
the config.pac can be defined. In Firefox this is the Automatic proxy con-
figuration URL, and in Internet Explorer it is called Use automatic configura-
tion script. To configure the location manually, check these boxes and insert
the URL to the config.pac script in the appropriate boxes. While this may
seem counterintuitive (why do you need to manually define a URL for automatic
configuration?) this method still gives you one significant benefit: once your

! Chapter 4: Implementation! 141

browsers are configured, they never need to be changed again. The entire
network can be configured to use new proxy settings by changing the single
config.pac file.

The DHCP and DNS methods allow you to define the location of the automatic
configuration file without hard coding a URL on every browser. This is imple-
mented by the Web Proxy Auto Discovery (WPAD) protocol. The protocol
provides a number of methods for generating a URL that refers to a Proxy Auto
Configuration file. This option is enabled in Firefox with the Auto-detect proxy
settings for this network setting. In Internet Explorer, the option is called
Automatically detect settings in IE.

The DHCP method is tried first, followed by a series of DNS lookups. To use
the DHCP method, define the URL to the config.pac using DHCP option
252. In ISC's dhcpd, the configuration looks like this:

Config for ISC DHCP server
option wpad code 252 = text;
option wpad "http://myserver.mydomain/config.pac";

When clients request a DHCP lease, they are also given the URL pointing to
the config.pac. Your clients may need to be rebooted (or their leases re-
leased and renewed) in order to pick up the change.

If no DHCP option 252 is provided, the WPAD protocol next attempts to find the
proxy server using DNS. If the client has a domain name of mydomain.com,
the browser will try to look up wpad.mydomain.com. If the DNS request is suc-
cessful, the browser makes an HTTP connection to that address on port 80 and
requests the file /wpad.dat. This file should have the same contents as the
config.pac file. To use the DNS method, you will need to configure your
DNS server to reply to requests for wpad.mydomain.com with the IP address of
your web server. You should copy (or rename) the config.pac file to
wpad.dat and place it in the root directory of your web server. Make sure
your web server returns the proper mime type for .dat files with an entry like
this in your mime.types:

application/x-ns-proxy-autoconfig dat

Now that your browsers can automatically find the proxy server, you can make
network-wide changes in a single place. Be sure that the web server that
serves the configuration file is always available. If that file cannot be found,
then your clients will not be able to find the proxy, and they won't be able to
browse.

142! Chapter 4: Implementation

DNS caching
DNS caching is used to save bandwidth on DNS queries and improve re-
sponse times. Improvements to DNS can make every other service (including
web browsing and email) "feel" faster, since virtually all services make use of
host lookups. Each DNS record has a Time To Live (TTL) that defines how
long the entry is valid. All name server responses include a TTL along with the
record requested. DNS caches keep a record in memory or on disk until the
TTL expires, thus saving bandwidth by not having to do queries for frequently
requested records.

Most DNS servers will act as a caching proxy. Here are examples of how to
implement a cache using dnsmasq, BIND, and djbdns.

dnsmasq
Dnsmasq is a lightweight, easy to configure DNS forwarder and DHCP server.
It is available for BSD and most Linux distributions, or from
http://freshmeat.net/projects/dnsmasq/. The big advantage of dnsmasq is
flexibility: it acts as both a caching DNS proxy and an authoritative source for
hosts and domains, without complicated zone file configuration. Updates can
be made to zone data without even restarting the service. It can also serve as
a DHCP server, and will integrate DNS service with DHCP host requests. It is
lightweight, stable, and flexible. Bind is likely a better choice for large networks
(more than a couple of hundred nodes), but the simplicity and flexibility of
dnsmasq makes it attractive for small to medium sized networks.

Setting up Dnsmasq is pretty easy. If you already have /etc/hosts and
/etc/resolv.conf set up, run dnsmasq and point other computers to the
server's IP address (using DHCP or manually configuring the DNS server). For
more complex configuration, the /etc/dnsmasq.conf file contains documen-
tation explaining all the various variables.

BIND (named)
The Berkeley Internet Name Domain (BIND) is capable of serving zones,
acting as a slave, performing caching and forwarding, implementing split hori-
zon (page 212), and doing just about anything else that is possible with DNS.
BIND is used by a vast majority of the Internet community to serve DNS, and
considered to be stable and robust. It is provided by the Internet Software
Consortium at http://www.isc.org/sw/bind/. Virtually all versions of Linux and
BSD include a package for BIND.

! Chapter 4: Implementation! 143

To run BIND as a caching DNS server, make sure there is an entry for the root
zone in your named.conf:

Hints file, listing the root nameservers
zone "." {
 type hint;
 file "root.cache";
};

That's all there is to it. Make sure your clients use this server for DNS instead
of your ISP's DNS server, and you're good to go.

djbdns
DJBDNS is a DNS server implemented by D. J. Bernstein. It is focused on se-
curity, and is claimed to be free of security holes. Unfortunately, djbdns has a
restrictive license which prevents patching and redistribution of patched execu-
tables, making it difficult for distribution maintainers to package it. To use
djbdns, you will need to download it from http://cr.yp.to/djbdns.html and com-
pile it yourself.

Once djbdns has been built and installed, it can be configured as follows to
provide DNS caching. First, create the users and configuration we need:

$ useradd Gdnscache
$ useradd Gdnslog
$ dnscache-conf Gdnscache Gdnslog /etc/dnscache 127.0.0.1

Next, install it as a service:

$ ln -s /etc/dnscache /service
$ sleep 5
$ svstat /service/dnscache

DNS queries made on this server should now be cached.

Mirroring
Mirroring is a technique used to synchronise files between hosts. This can be
used to store local copies of software updates on a server, provide redundancy
for load distribution between servers, or even perform backup. Mirroring saves
bandwidth by providing a local copy of popular data. Users request information
from the mirror rather than directly from the site on the Internet. Mirrors are
updated at off-peak times to minimise the impact on other services.

144! Chapter 4: Implementation

Software Updates
Most packages or operating systems require software updates. If you look at
the output from your proxy log file analysis, it will become apparent that one or
two software update sites contribute significantly to your bandwidth consump-
tion. While a caching proxy will take some of the load off, you can proactively
populate a local mirror with software updates, and redirect your users there.
Some common applications that update themselves are:

• Windows. Windows updates are a common problem, since machines asyn-
chronously decide when to update themselves, and download redundant cop-
ies of the same patches. Fortunately, you can to set up a Microsoft Win-
dows Server Update Services (WSUS) mirror on your local network. Clients
can then be made to point to the local server for updates through a simple
registry entry. Full details on setting up your own Windows Update Server
can be found at http://www.microsoft.com/wsus

• Adobe software. If you have Adobe Acrobat installed on several machines,
it will frequently look for and download updates. Keep local, up to date copies
and encourage users to disable automatic updates.

• Linux distributions. Some Linux distributions can download vast amounts of
updates automatically at regular intervals. You should decide on a few distri-
butions that you want to support and try to keep a local mirror, even if it is
only used for updates. Data repositories for Linux distributions can be mir-
rored locally using rsync or wget, and configured to be used by system up-
date tools (such as yum and apt).

There are many other software packages that "call home" to look for updates.
Some of these include anti-virus software, most shareware, and even the Mac
OS X operating system. By watching your proxy logs (page 81), you can get a
clear idea of what information is frequently requested, and make local copies to
remove some of the load on the Internet connection.

Some services lend themselves well to mirroring, while others do not. Large
software repositories (such as Linux and BSD distributions, public FTP servers,
software update sites, etc.). are ideal for local mirroring. Dynamic sites (such
as news sites and web mail services) cannot be mirrored, but may benefit from
caching (page 135). While there isn't a standard method for mirroring arbitrary
sites, several tools can help you create local copies of Internet content.

GNU wget
GNU wget is a free utility for non-interactive download of files from the web. It
supports HTTP, HTTPS, and FTP, as well as retrieval through HTTP proxies.
By limiting the transfer rate to any value, wget can shape usage to fit the avail-
able bandwidth. It can be run manually or in the background as a non-

! Chapter 4: Implementation! 145

interactive process, downloading as many web pages as you like from a par-
ticular site. This allows you to start a retrieval and disconnect from the system,
letting wget finish the work.

Wget supports a full-featured recursion mechanism, through which it is possible
to retrieve large parts of the web automatically. The level of recursion and
other mirroring parameters can be specified. It respects the robot exclusion
standard (specified by the file robots.txt in the root directory of a web
server).

Wget has been designed for robustness over slow or unstable network connec-
tions. If a download fails due to a network problem, it will keep retrying until the
whole file has been retrieved. If the server supports resumed downloads, it will
instruct the server to continue the download from where it left off. Wget can
even convert the links in downloaded HTML files to point to local files. This fea-
ture facilitates off-line viewing.

There are quite a few command-line options for Wget. From a terminal, man
wget or wget --help will list all of them. Here are some examples to get you
started.

This will create a mirror of www.yahoo.com, retrying each request once when
errors occur. The result will have the same directory structure as the original
website. Results are logged to the file wget.log.

wget -r -t1 http://www.yahoo.com/ -o wget.log

You can schedule wget to run at any time using cron. This crontab will mirror
the Xemacs ftp server every Sunday at midnight:

 0 0 * * 0 wget --mirror ftp://ftp.xemacs.org/pub/xemacs/ -o /home/me/xfer.log

The --mirror option turns on recursion and time stamping, sets infinite recur-
sion depth and keeps ftp directory listings.

Wget is so popular that it is included by default in many Linux distributions. You
can download the latest version from http://www.gnu.org/software/wget/.

Curl
Like wget, curl is a command line tool for downloading data from URLs, but is
far more flexible. From the http://curl.haxx.se/ website:

curl is a command line tool for transferring files with URL syntax, support-
ing FTP, FTPS, TFTP, HTTP, HTTPS, TELNET, DICT, FILE and LDAP. curl
supports SSL certificates, HTTP POST, HTTP PUT, FTP uploading, HTTP
form based upload, proxies, cookies, user+password authentication (Basic,

146! Chapter 4: Implementation

Digest, NTLM, Negotiate, kerberos...), file transfer resume, proxy tunneling
and a busload of other useful tricks.

One difference between wget and curl is that curl assumes that you want to use
standard out for the retrieved data. To retrieve a web page and save it to
file.html, use the -o switch:

curl -o file.html http://www.yahoo.com

Unfortunately, one feature that curl does not have is recursive downloading.
But this is supported using a wrapper script for curl, such as curlmirror
(http://curl.haxx.se/programs/curlmirror.txt). Run curlmirror -? for a list of
options. Curl can be downloaded from the main web site, and is included in
many modern Linux distributions.

HTTrack
HTTrack (http://www.httrack.com) is a website mirroring and offline browser
utility. It allows you to recursively download and store entire websites, rewriting
URLs to facilitate offline browsing.

Figure 4.10: HTTrack can save entire websites for offline browsing.

It can also update an existing mirrored site without downloading the entire con-
tents again, as well as resume interrupted downloads. There are versions
available for Windows 9x/NT/2000/XP, as well as Linux, BSD, and Mac OS X.

! Chapter 4: Implementation! 147

HTTrack has a friendly, intuitive interface and an extensive help system. It is
much easier to run than other mirroring software, but lacks some features (such
as download scheduling). It is open source and released under the GPL.

rsync
There are far more efficient ways to mirror content than over HTTP. If you have
shell access on a remote file server, you can use rsync instead. This lets you
synchronise files and directories between systems much faster, without tying up
public web server resources. You can run rsync over its own TCP port, or tun-
nel it over SSH for added security.

It can be quicker to run rsync rather than using a web mirroring utility, since
rsync can transfer only changes within a file rather than the entire file. This can
help when mirroring large files, such as compressed backups, or file archives.
You can only use rsync on systems that run a public rsync server, or servers on
which you have shell access.

Just about all versions of Linux and BSD include rsync, and it will also run on
Windows and Mac OS X. You can download it at http://samba.org/rsync/.

Email
Email was the most popular application of the Internet before Tim Berners-Lee
invented the World Wide Web, and is still extremely popular today. Most
Internet users have at least one email address. Email's long history of devel-
opment has made it cheap, fast, resilient, and almost universally supported. All
modern computers, mobile phones, PDAs, and many other electronic devices
have email support, making it nearly as ubiquitous as the telephone. In many
organisations, email has even surpassed the telephone as the standard means
of communication, where it is used for everything from internal information ex-
change to customer-facing sales and support. Many companies provide free
email services (e.g. Microsoft, Yahoo, and Google).

Email Basics!
Email senders use a program such as Thunderbird or Outlook (or even a Web
browser) to create their message. When they click the "Send" button, the mes-
sage is passed on to a local Mail Transfer Agent (MTA), often located in their
company or at their Internet Service Provider. The MTA's task is to deliver the
email to the recipient's MTA via the Internet.

Email is usually transferred across the Internet using a protocol known as the
Simple Mail Transfer Protocol (SMTP). The current version is defined in
RFC2821 (http://www.rfc.net/rfc2821.html). Earlier RFCs related to email date

148! Chapter 4: Implementation

back as far as 1980, and primordial electronic messaging systems existed for
years before that.

When the recipient's MTA receives an email, it often cannot be delivered di-
rectly to the recipient's computer. This could be because the recipient is not
online, their mail client is not running, or they do not wish to store their mail on
their own machine. Therefore, the recipient's MTA usually delivers the email to
a storage service instead. This is known as a Mail Delivery Agent (MDA). The
client can collect their mail from the MDA whenever they like, using protocols
such as POP3 and IMAP. The program that ultimately retrieves the mail and
displays it to the user is called the Mail User Agent (MUA).

Email Security
Unfortunately, SMTP is a simple protocol that does not offer much security. Due
to its popularity and widespread support, it has proved impossible to replace.
This lack of security has made it trivial for unscrupulous users to send vast
amounts of unsolicited bulk email (a.k.a. spam). The senders are often called
spammers. Most users do not want to receive spam, and it wastes their time
and bandwidth.

It is in your best interests to limit the amount of junk mail that passes through
your mail server. Your organisation is ultimately responsible for the email that
emanates from your network. If you allow the entire world to relay mail through
your email server, you will not only add to the growing spam problem, but you
can easily get your mail server or IP address range blacklisted. If this happens,
you will not be able to send or receive email at all, as major mail servers
around the world will refuse to communicate with you. Acting as a spam relay
may even violate the terms of service of your ISP, and could get you discon-
nected. If your bandwidth is charged by the byte, you are likely to receive a bill
for all of the spam that came from your network before it was shut off!

There are four critical steps to keep in mind when running an Internet email
service from your network. These steps are:

1. Choose a good MTA. There are many available, so you should choose
one that is secure, fast, and flexible enough to support mail services at your
organisation. (page 151)

2. Eliminate all open relays. Users should be authenticated (by IP address,
username and password, or some other credentials) before your server
accepts the email for relaying. (page 166)

3. Implement anti-spam and anti-virus measures for inbound (and, if
possible, outbound) email. For inbound email, this will help reduce com-
plaints from your users. For outbound email, this can help you to find mali-
cious users and machines infected with viruses. (page 152)

! Chapter 4: Implementation! 149

4. Closely monitor the volume and profile of mail sent from your net-
work. While they can catch more than 99% of unwanted email traffic, no
email filter is completely infallible. A sudden increase in email volume, or
mail being sent at unusual hours, can indicate that spam is getting around
your filter and leaving your network. (page 82)

By following these four steps, you can go a long way towards reducing the
bandwidth spent on handling email, and keeping your network off the blacklists.
But since email is so widely abused, there are a few other subtle points to keep
in mind. If your organisation uses dynamic IP space (page 37), you may run
into unexpected trouble with your mail server. Some organisations that compile
blacklists also collect lists of known dynamic IP ranges. These IP lists are then
published in the form of a DNS Black List (DNSBL) and can be used by large
ISPs for rejecting mail. Since dynamic IPs are relatively anonymous, they are
often havens for prolific spammers.

It is also common practice for large ISPs to block all traffic destined for port 25
(the SMTP port) originating from their dynamic IP space, in an effort to prevent
outbound spam. Whenever possible, use a static IP address for your email
server. If this is not possible, you should configure your email server to relay all
outbound mail to the SMTP server at your ISP. This is required by some ISPs in
order to track email abuse.

Choosing an MTA
On UNIX-like operating systems such as Linux and FreeBSD, there are four
popular MTAs: Sendmail, qmail, Postfix, and Exim. All of these are quite
powerful and reliable, but choosing the right one for your needs is vital, as there
are some important differences between them.

• Sendmail (http://www.sendmail.org/) is the oldest MTA still in common use.
When it was released in the early 1980s, it was responsible for delivering
almost all of the e-mail sent over the Internet. Its popularity has declined due
to its reputation for being difficult to configure, as well as the discovery of a
number of critical security flaws over the years. Despite this, it is still in-
cluded by default with many UNIX operating systems. If properly configured,
Sendmail is efficient and has many useful features, but unless you are al-
ready familiar with the program or it has been set up for you already, you
should probably consider one of the other, more easy-to-use MTAs. Sendmail
is being completely re-written and the new version, known as Sendmail X,
may resolve some of the issues with the original program.

• qmail (http://www.qmail.org/) was written specifically because of security
concerns with Sendmail. It has an unusual design that has proven very suc-
cessful at repelling attacks, and is also known for being very fast, stable, and
minimal (that is, it has a relatively small set of features compared to the other

150! Chapter 4: Implementation

MTAs). The author of the program has not updated it since 1997, and the
licensing conditions prevent any modifications from being officially released,
although unofficial patches are available. Because of its unconventional na-
ture, it is not recommended that you use qmail unless you are already famil-
iar with it or are willing to put the effort into learning more about it. For more
information, see http://www.lifewithqmail.org/.

• Postfix (http://www.postfix.org/) was developed by a security expert at IBM.
It has a significantly better security record than Sendmail, and is considered
easier to use than qmail. Like qmail, and unlike Sendmail and Exim, Postfix
emphasises security over features. However, it has a more conventional de-
sign than qmail and its configuration is easier to understand. It is the only
MTA besides Sendmail to support Sendmail's mail filters (milters). It is also
well documented and has good community support. Postfix is very efficient in
memory usage, speed, and bandwidth.

• Exim (http://www.exim.org/) was developed at Cambridge University (UK)
before the release of qmail or Postfix, to provide them with a replacement for
Sendmail. The configuration file is easy to read and understand, and the
documentation is very good. Exim is extendable and easy to configure, mak-
ing it simple to do clever and strange things with mail systems. The author
has never claimed that Exim is secure, and early versions had many security
problems. But since 2000 its security record has been quite good.

In summary, Postfix and Exim are likely to be the most appropriate choices for
inexperienced users. Postfix seems to have a better security record, while Exim
is more flexible. Both are relatively easy to use. Postfix may have better per-
formance for larger sites. Exim is recommended for smaller sites, people new
to mail systems, and sites that need strange/unusual mail configurations. For
exceptionally large sites, qmail may provide better performance, but it comes
with a very high learning curve.

If you are stuck with a Windows server, there are a few free mail servers that
you can try. All of these include MTA and MDA functionality (in other words,
they can receive, send, and store mail):

• Mercury Mail (http://www.pmail.com/) is a feature-rich mail server. It was
designed to work with the Pegasus Mail client (which is an MUA), but it is
also very standards-compliant and should work with most MUAs. Two ver-
sions are available: one for Novell NetWare and the other for Windows.

• Macallan (http://macallan.club.fr/MMS) runs on Windows XP and 2000. It
provides all the basic mail server features, and includes built-in webmail. The
free version supports up to 128 mailboxes.

• MailEnable (http://www.mailenable.com/) is a Windows mail server that
supports SMTP and POP3. The free version does not support IMAP. It has a

! Chapter 4: Implementation! 151

mailing list manager that makes it easy to administer subscription-based dis-
tribution lists.

• BaSoMail (http://www.baso.no/) is a compact and easy-to-use SMTP/POP3
server for Windows. It does not support IMAP.

Securing your mail server
The war on spam is constantly evolving as developers find new and clever
ways to outwit the spammers, and spammers find devious and subtle ways to
outwit the developers. A strong email server implementation will include the
following components:

• A secured MTA installation. The choice of MTA is up to you, but it should
authenticate outbound email before sending to eliminate the possibility of
open relays. Follow the installation instructions for your MTA to be sure that
authentication is properly enabled (page 152). You can test your own email
server for holes using abuse.net's Mail relay testing tool, available at
http://www.abuse.net/relay.html . Another popular testing tool is the ORDB
at http://www.ordb.org/submit/, provided by the Open Relay Database.

• A spam filtering package, such as SpamAssassin or DSPAM. SpamAssas-
sin provides a way to reduce, if not completely eliminate, unsolicited junk mail
from your incoming email. It uses a scoring system based on local and net-
work defined rules to identify messages which appear to be spam. It then
adds headers to the message that identify the total spam "score," allowing
the messages to be easily filtered by the user's mail client. DSPAM ap-
proaches the problem differently, by relying almost completely on automated
language analysis and deobfuscation techniques instead of user-contributed
rulesets and blacklists. While we use SpamAssassin for the examples in this
book, both packages are open source and are worth considering. Spamas-
sassin can be downloaded from http://spamassassin.apache.org/. DSPAM is
available at http://dspam.nuclearelephant.com/.

• ClamAV (http://www.clamav.net/). Clam Antivirus is fast and robust open
source antivirus package. It includes a multi-threaded daemon (for speed)
and a simple command line scanner. Its virus definition files are automatically
updated from the Internet, keeping it up to date as new viruses are discov-
ered. When used in combination with an MTA, ClamAV allows you to scan
for viruses and other harmful content embedded in email, before it is deliv-
ered to the user.

• Amavisd-new (http://www.ijs.si/software/amavisd/). This package acts as an
interface between your MTA and content filters such as SpamAssassin and
ClamAV. It works with every popular MTA including Postfix, Sendmail, Qmail,
and Exim.

•

152! Chapter 4: Implementation

From the AMaViS website:

amavisd-new is a high-performance interface between mailer (MTA) and
content checkers: virus scanners, and/or SpamAssassin. It is written in Perl
for maintainability, without paying a significant price for speed. It talks to
MTA via (E)SMTP or LMTP, or by using helper programs.

By combining amavisd-new with your content filters (SpamAssassin and Cla-
mAV), it is possible to build a robust email solution capable of handling very
large email loads, even on relatively modest hardware. All of these compo-
nents are open source.

You should combine all of these, if possible, to defend your mail server and
your users against spam and viruses.

Greylisting
While blacklists provide explicit criteria used to refuse mail, and whitelists ex-
plicitly permit mail, greylists provide the functionality of both. Each time a
given mailbox receives an email from an unknown IP address, the mail is
automatically rejected with a "try again later" message. This happens at the
SMTP layer, and is transparent to the sender or recipient. Since most spam-
ming software is quite simple and does not comply with established RFCs, will
not try again later and will simply drop the message. This can provide an im-
mediate and dramatic reduction in spam without using content filtering.

If the MTA tries again after the greylisting period (typically 30 minutes), a com-
bination of the sender's email address, IP address, and the recipient's email
address is whitelisted for 3 days. If email from the same sender and IP address
is sent to the same recipient is within 3 days, it is sent through without delay
and the whitelisting period is reset for a further 3 days.

Figure 4.11: Greylisting can show an immediate improvement in deterring spam, while
consuming modest resources.

While some users report very good results using greylists, others have had
mixed results.

! Chapter 4: Implementation! 153

The author of one package, exim-greylist, writes on his website:

!I no longer maintain this because I no longer use greylisting on my server,
it proved to be little efficient when having a lot of other SPAM checks and
often deferred valid email for me and my users. I'm leaving this here for
reference only.

If you decide to implement greylisting, you should evaluate its performance to
determine how effectively it combats the sort of spam that is directed at your
network.

Greylisting must be implemented in the MTA, and is typically achieved by using
third party software. The following is a list of freely available, open source
greylisting software packages for various MTAs.

For Postfix:

• GLD (http://www.gasmi.net/gld.html) - Greylist server with MySQL database
by Salim Gasmi.

• SQLgrey (http://sqlgrey.sourceforge.net/) - Greylist policy server with auto-
whitelisting in Perl with support for PostgreSQL, MySQL and SQLite storage
by Lionel Bouton.

• GPS (http://mimo.gn.apc.org/gps/) - Greylist policy server in C++ using
MySql, Postgres, or SQLite by Michael Moritz.

• PostGrey (http://isg.ee.ethz.ch/tools/postgrey/) - Greylist policy server in Perl
by David Schweikert.

• Policyd (http://policyd.sourceforge.net/) - Policy server in C which provides
greylisting, sender (envelope, SASL, or host/ip) based throttling (messages
and/or volume per hour) and spam traps by Cami Sardinha.

• TumGreySPF (http://www.tummy.com/Community/software/tumgreyspf/) -
Greylisting and SPF policy server by Sean Reifschneider. This uses the file
system (instead of a database file) for storing greylist data and configuration
information.

For Sendmail:

• milter-greylist (http://hcpnet.free.fr/milter-greylist/) - milter-greylist is a stand-
alone milter written in C that implements the greylist filtering method.

• SMFS (http://smfs.sourceforge.net/) - Lightweight, fast, and reliable Send-
mail milters for SPAM and virus filtering. SMFS includes support for greylists,
SPF, SpamAssassin, and other filtering techniques.

154! Chapter 4: Implementation

For Exim:

• greylistd (http://www.tldp.org/HOWTO/Spam-Filtering-for-MX/exim.html) - a
Python implementation by Tor Slettnes.

• Direct support in Exim configuration file (no external programs) using MySQL
(http:/ / theinternetco.net/projects/ex im/greyl is t) or Postgres
(http://raw.no/personal/blog/tech/Debian/2004-03-14-15-55_greylisting)

• exim-greylist (http://johannes.sipsolutions.net/Projects/ex), advanced greyl-
isting including statistics and manual whitelisting capability with Exim 4 and
MySQL. No longer maintained.

For Qmail:

• qgreylist (http://www.jonatkins.com/page/software/qgreylist)

• denysoft_greylist
 (http://www.openfusion.com.au/labs/dist/denysoft_greylist)

DomainKeys
DomainKeys are designed not only to verify the authenticity of an email
sender, but also to ensure that the email has not been tampered with in transit.
Under the DomainKeys system, the sender generates two cryptographic keys:
the public key and the private key. Anything encoded with the public key can be
decoded using the private key, and vice versa. The public key is published in
the sender's DNS records.

The sender signs all of their messages with a signature that has been gener-
ated based on the contents of the email, and encoded using the sender's pri-
vate key. When the email arrives, the receiver can look up the public key in the
DNS record for the domain from which the email claims to be. If the sender is
authentic and really has access to the private key, then the public key can de-
code the encrypted signature, and hence the receiver can be confident that the
sender is authentic and that the email has not been tampered with in transit.

More details on how to set up DomainKeys with various MTAs can be found at
http://antispam.yahoo.com/domainkeys. Yahoo! is one of the chief proponents
of DomainKeys.

Sender Policy Framework (SPF)
Sender Policy Framework (SPF) is designed to fight email forgery, which is
often used in scam emails. SPF allows you to verify that mail apparently from a

! Chapter 4: Implementation! 155

particular domain (say, a financial institution or government office) was sent
from an authorised mail server. SPF verifies the path that email took to arrive
at your server, and can discard email that originated at unauthorised MTAs be-
fore the message is transmitted, thus saving bandwidth and reducing spam. It
works by publishing DNS records that indicate valid mail servers for your do-
main. Before mail is accepted, the receiving MTA does a DNS lookup to verify
that the sender is an authorised email server for the domain. If not, it termi-
nates the connection. If SPF records for the domain match the sender's MTA,
the mail is accepted.

While this can do little to help with email sent from bogus addresses (or do-
mains that do not publish SPF records), it promises to reduce email forgeries
as more organisations implement it. SPF documentation is available from the
main site at http://www.openspf.org/.

As with greylisting and domain keys, SPF is implemented in your MTA. The
following is a list of packages that provide SPF support for various MTAs.

For Postfix:

• libspf2-1.2.x Patch (http://www.linuxrulz.org/nkukard/postfix/) - Patch to
Postfix to allow native SPF support by Nigel Kukard.

• TumGreySPF (http://www.tummy.com/Community/software/tumgreyspf/) -
Greylisting and SPF policy server by Sean Reifschneider. This uses the file
system (instead of a database file) for storing greylist data and configuration
information.

For Sendmail:

• SMFS (http://smfs.sourceforge.net/) - Lightweight, fast and reliable Sendmail
milters for SPAM and virus filtering.

• SPFMilter (http://www.acme.com/software/spfmilter/)

Resources
• DomainKeys entry on Wikipedia, (http://en.wikipedia.org/wiki/DomainKeys)

• Firewalls in FreeBSD,
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/firewalls.html

• MTA comparisons:
http://shearer.org/MTA_Comparison
http://www.python.org/cgi-bin/faqw-mm.py?req=show&file=faq04.002.htp

156! Chapter 4: Implementation

• Netfilter Packet Filtering HOWTO:
http://www.netfilter.org/documentation/HOWTO/packet-filtering-HOWTO-7.html

• Netfilter documentation: http://www.netfilter.org/documentation/

• Network Address Translation HOWTO :
http://www.netfilter.org/documentation/HOWTO/NAT-HOWTO.html

• Squid documentation, http://www.visolve.com/squid/

• Squid FAQ, http://www.squid-cache.org/Doc/FAQ/FAQ-17.html

• Squid Wiki, http://wiki.squid-cache.org/

• Wessels, Duane. Squid: The Definitive Guide. O'Reilly Media (2004).
http://squidbook.org/

! Chapter 4: Implementation! 157

